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ABSTRACT 

In this work the author demonstrated a robust and efficient method for implementing Doppler 
classification through the use of Linear Discriminant Analysis (LDA). LDAs were used to reduce 
dramatically the data dimensionality and thereby eliminate redundancy and improve the efficiency of the 
classifier. The performance was assessed on a three-class problem of personnel, tracked and wheeled 
vehicles. Real radar data from a ground based system were used in the design and testing of the classifier. 
The classifier algorithm was optimised by choosing the best set of features that maximised the 
performance and the bootstrap method was used to measure the confidence interval. It was shown that 
only the first few LDA features were relevant. At the very least these were shown to contain information 
regarding the frequency extent of target Doppler sidebands. The classifier was shown to be robust to 
changes in target viewing geometry and speed. Overall, good classification was achieved for personnel 
with some misclassification between tracked and wheeled vehicles. 

1.0 INTRODUCTION 

MTI (Moving Target Indication) radars can provide an all-weather, day/night, surveillance capability. 
Such radar systems provide very efficient location information on moving targets but traditionally have 
limited recognition capability. Automatic recognition algorithms developed for imaging radars, which 
exploit target spatial information, are not applicable for MTI systems because they operate in a low 
resolution mode. However, there is potential for classification based on target Doppler signatures. The 
Doppler signatures are shifted in frequency in proportion to the target radial velocity. Movement or 
rotation of structures on a target may induce additional frequency modulations on the returned radar signal 
and generate sidebands about the Doppler frequency shift of the target’s body. The signature 
characteristics of these Doppler sidebands provide a mechanism for classifying the target of interest. 

The Doppler classifier models each target class as a multivariate Gaussian mixture distribution (GMD). 
The parameters of the GMD model are estimated using labelled training data. The input feature vectors are 
generated from the radar Doppler spectra. It is assumed that each Doppler spectrum provides an 
independent feature vector. Training uses multiple Doppler spectra per target class. Recognition is 
performed using a single Doppler spectrum (feature vector). 

The size (and therefore the dimensionality) of the input feature vector depends upon the number of 
separate frequency bins in the Doppler spectra. Herein lies the limitation of a classification technique that 
uses the Doppler spectra directly for input feature vectors. Doppler spectra can comprise a large number of 
frequency bins (several tens, possibly hundreds) to cover sufficiently the full range of Doppler frequencies 
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at enough resolution to be able to provide meaningful classification performance. High dimensionality 
leads to increased classifier complexity. There are more parameters to estimate per target model which 
results in an increased processing load. Reducing dimensionality makes the classification calculations 
quicker and saves on data storage space. Furthermore, the original set of variables may contain redundant 
and irrelevant information. Redundancy would result in the classifier having extra parameters over and 
above the minimum required to capture the structure within the data. For a finite training set this would 
lead to poorer estimation of the classifier parameters. Therefore, reducing the dimensionality could also 
improve classifier robustness.  

Linear Discriminant Analysis (LDA) is a well established technique for obtaining a reduced-dimension 
representation of the data. LDA defines (a few) new variables as linear combinations of the original ones. 
Evidence from speech recognition has shown that the classification performance improves if features are 
extracted using LDA [1]. There is a key similarity between speech processing and Doppler processing i.e., 
both use the spectrogram as the input measurement. LDA could potentially offer a good approach for 
reducing the number of variables in the Doppler spectra. The technique consists of transforming the 
Doppler spectra variables using linear combination into a set of features (the feature vector) that are 
mutually orthogonal. The individual features are assumed to be independent. The transformation is 
designed to maximise the between-class covariance and minimise the average within-class covariance. 
The transformed features are ranked in order of the class separability. In theory, the classification 
performance should increase monotonically as the number of features increases. This allows simple trade-
offs to be made between complexity (number of features) and viability (classification performance). 

The classification algorithm is developed for a three class problem based on personnel, wheeled vehicles 
and tracked vehicles. Section 2 gives an outline of the algorithm. It describes the pre-processing, the LDA 
feature extraction and the Doppler classification stages of the algorithm. The data sets used in this study 
are described in Section 3. Results are presented in Section 4. Section 5 summarises the conclusions.  

2.0 CLASSIFICATION ALGORITHM 

2.1  Pre-processing 
The objective of Doppler classification is to classify an unknown target as belonging to one of a 
predefined set of classes based on the measured Doppler spectra. The Doppler spectra are obtained by 
Fourier transforming a sequence of samples obtained from a single range cell during the radar dwell. 
Figure 1 compares typical spectra of a wheeled vehicle, a tracked vehicle and a man jogging. The peak in 
the spectra corresponds to the Doppler shift due to the body of the target. The Doppler sidebands, if 
present, are due to any parts of the target which are moving independently of the main body at that 
moment. For the wheeled vehicle there are no Doppler sidebands visible. This can be contrasted with the 
much more complex, but asymmetrical, spectrum of the tracked vehicle, and this can again be 
distinguished from the more symmetrical spectrum of the walking man. 

The information in the Doppler spectra, however, cannot be used directly for classification. This is 
because the Doppler radar signature is affected by certain factors such as the radar gain, noise level, etc., 
that are unrelated to the target class but can confuse the classification process. The data can be 
transformed so that the Doppler signatures are invariant to these factors. This process that is performed 
prior to classification is termed ‘pre-processing’. 

The pre-processing aims to obtain a 2D spectrogram from a long sequence of temporal samples and 
process each individual spectrum to extract a target Doppler-profile that is independent of radar-
calibration and target-velocity. The spectrogram is generated using a short-time Fourier transform. Clutter 
frequency bins are masked and those that contain noise only are clipped to a minimum value. The peak in 
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each Doppler-profile is centred which makes the spectrum invariant to target velocity. Finally, the data are 
normalised with respect to received power and transformed using natural logarithms.  

 

Figure 1: Doppler spectra from land targets 

Figure 2 plots the Doppler signatures shown in Figure 1 following pre-processing. All the spectra have 
equal peak values and are centred on the same Doppler frequency. The pre-processed Doppler signatures 
are now invariant to changes in radar gain and target bulk velocity. 

The pre-processing also partitions the data into five separate velocity bands based on the estimate of the 
target body velocity obtained using the peak in the Doppler spectrum. This is designed to enable the 
algorithm to model some aspects of the velocity dependent data attributes. A separate classifier is trained 
and tested for data from each velocity band.  

 

Figure 2: Doppler spectra from land targets following pre-processing 
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2.2 LDA feature extraction 
The pre-processed Doppler spectra are put through the LDA data reduction process using the 
transformation  

xAy T= (1)

where x  is the log-normalised Doppler spectrum with p variables, y  is the LDA transformed feature 
vector with d variables and A  is the dp×  linear transformation matrix. The latter is the feature 
transformation matrix [ ]daaA K1= , where ja  are the eigenvectors of the generalised symmetric 
eigenvector equation [2] 

aSaS WB λ= (2)

The LDA process obtains the transformation that maximises the ratio of between class covariance to 
average within-class covariance. WS  is the average within-class covariance matrix given by: 
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where in  is the number of measurements in the i-th class, n  the total number of measurements in the data 

set, C  the number of classes and iΣ̂  is the sample covariance of class i given by: 
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where qx and im are the measurement vector and the sample mean for the i-th class respectively. Each of 
these is a p-dimension vector. The latter is given by: 
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BS  is the between-class covariance matrix given by: 
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where m  is the sample mean of the entire data. 

The number of columns (eigenvectors) in the matrix A  defines the size of the LDA feature vector y . The 
upper limit for d is the maximum number of non-zero eigenvalues for (2) given by: 

( )1,minmax −= Cpd (7)

Since the eigenvalues for (2) are ordered in terms of class separability, in theory the classification 
performance should increase monotonically as the size of the LDA feature vector y  is increased. The 
transformation matrix A  is estimated using the same training data that is used for estimating the classifier 
parameters. As pre-processing partitions the data in to Vb (=5) different velocity-bands a separate 
transformation matrix kA , where bVk ,,1K=  is estimated for each velocity-band. Furthermore, the 
estimation process requires that the data are class-labelled. One option would have been to use the three 
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broad-class labels, personnel, tracked vehicles and wheeled vehicles. However, this would have limited 
maxd  to just a maximum of two features. It was felt that this would not have been sufficient to fully exploit 

the structure in the data. For this reason a fine-class labelling mechanism was adopted to increase C and 
thereby allow for a higher value for maxd  for the transformed feature vector y . The fine-class labelling 
was based on the target type, its aspect angle and its nominal speed. It may be possible, although this was 
not proven, that the fine-class categories have some physical justification.  

2.3 Doppler classifier 
The LDA feature vectors are used as inputs to the classifier. A separate classifier is defined for each of the 
velocity-bands V. For C broad classes the class membership is denoted by ikω , 

{ } { }VkCi ,,1 ,,,1 KK ∈∈ . For an unknown feature vector ky  the class membership will be one that 
maximises the posterior probability ( )kikP y|ω . According to Bayes’ rule this is equivalent to:  
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where )|( ikkP ωy  is the probability of the feature-vector ky  from velocity-band k arising from class 

ikω , and )( ikP ω is the prior probability of class ikω  being present. All the training classes were assumed 
to be equally likely. Thus class membership is based on the probability value )|( ikkP ωy  calculated for 
each broad-class.  

Each broad class probability was modelled as a multivariate Gaussian mixture model with a diagonal 
covariance matrix. The mixture distribution has the same dimensionality as the LDA feature vector. Four 
mixture components were used. The parameters of the model (mean, variance and weights) were estimated 
using training data. Performance was evaluated using independent test data.  

2.0 DATA SET 

Radar data from moving targets were collected using a J-band, horizontal polarisation, short range, ground 
based system using a 4 kHz pulse repetition frequency. The radar measurements were taken with the 
antenna pointing in a fixed direction and a control target moving through the radar swath at a specified 
aspect angle and speed. This constituted a single imaging run and the process was repeated for a number 
of different target types belonging to the three broad classes. The personnel data were obtained from a trial 
where two subjects were imaged walking and jogging either towards the radar or moving directly away 
from it. The vehicle data were obtained from a separate trial where three tracked and two wheeled vehicle 
types were imaged along 9 different aspect angles travelling at a nominal constant speed. This provided 53 
different imaging runs from which data were extracted. 

For each imaging run, a number of independent target signature files of four seconds dwell were generated 
by processing data from different locations along the range swath. The processed range resolution was 
chosen such that it was wider than the dimensions of the largest target in the data set. All the data files 
were pre-processed and partitioned into velocity bands. There was an uneven distribution of classes over 
the velocity bands. The lowest two velocity bands contained mainly personnel targets. All three target 
classes were represented in the next two highest velocity bands. Velocity band V (targets with velocity 
12mph and above) on the other hand had only vehicle targets. The data files were given two different 
types of labels. Fine labels were used in the estimation of the LDA transformation matrix. A total of 53 
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fine-class labels were defined as summarised by Table 1. Only broad class labels were used in the training 
and testing of the classifier. 

Broad Class Target Type Aspect Angle Speed Total per broad 
class 

Personnel 2 2 2 8 

Tracked Vehicles 3 9 1 27 

Wheeled Vehicles 2 9 1 18 

Total 53 

Table 1: Breakdown of fine-class categories for the entire database 

3.0 RESULTS 

 

Figure 3: LDA transformation matrix eigenvalues plotted for each velocity-band 

Figure 3 shows the comparison of the eigenvalues for the different velocity-band data. The eigenvalues 
provided some indication of the class separability. As the LDA theory stated, the eigenvalues were 
monotonically decreasing. Eigenvalues with values close to zero can be assumed to be irrelevant. 
Velocity-band I and II had data primarily just from the personnel class and therefore there was just one 
single dominant eigenvalue. Velocity-band III and IV also had a relatively high first eigenvalue. This 
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suggested that the first eigenvector should provide good class separability. For velocity-band V there were 
no dominant eigenvalues, however, the first few eigenvalues were non-zero. This suggested that just a few 
features would probably be sufficient for optimum classification. 

Further useful insight into the class separability can be obtained using 2-dimensional scatter plots of the 
feature vectors. Figure 4 compares the results obtained for plotting the first two LDA features for two 
different velocity-bands. The left-hand result is for velocity-band III which had data for all three target 
classes and the right hand result is velocity-band V that had only vehicle data. The feature values are 
labelled d0 and d1 respectively. Each point in the scatter plot is data from one feature vector. 

   

      

Figure 4: Scatter plot for the first two LDA features. (left image) Velocity-band III (right image) 
Velocity-band V 

From Figure 4 it can be seen that for velocity-band III the personnel class separated completely from the 
vehicle classes. The vehicle classes also showed some degree of separation but there was some overlap 
between the tracked and wheeled vehicles. The same result for velocity-band V showed that there was a 
relatively small region of the feature space occupied by both tracked and wheeled classes. However, this 
was contrasted by a significantly larger region of the feature space that was occupied exclusively by the 
tracked class. 

It is not trivial to interpret the eigenvectors in a physical manner. One possible method for determining 
what information is captured by an eigenvector (and therefore the LDA feature) is to look for evidence for 
any correlation between the LDA feature and ad hoc features that have a physical interpretation. The target 
Doppler sideband extent can be measured as an ad hoc feature. Empirical analysis showed that tracked 
vehicles tended to have broad extent whereas wheeled vehicles generally had a narrow Doppler extent. 
Figure 5 replots the scatter plot of the first two LDA features for velocity-band V highlighting data that 
has broad Doppler extent. It showed that a majority of the region, that separated the tracked from the 
wheeled class, was explained in terms of the Doppler extent. Thus the first two LDA features were 

 Personnel 

 Tracked Vehicles  

 Wheeled Vehicles 
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capturing information regarding the Doppler sideband extent in some way. The LDA features, however, 
cannot exactly represent this ad hoc feature since the latter is a non-linear feature. 

 

Figure 5: Scatter plot for the first two LDA features for velocity-band V. Data points that 
corresponded to a wide Doppler extent are highlighted in purple 

A separate classifier was implemented for each velocity band. The first two velocity bands had only data 
from the personnel class and therefore were excluded from the calculations. The data in each of the other 
three velocity bands were split into training and test sets using a 3-to-1 ratio. Performance results were 
averaged over all three velocity bands. 

Figure 6 plots the percentage correct classification averaged over all three broad classes (personnel, 
tracked and wheeled vehicles) as the number of features was increased. Results are shown for two cases, 
(a) feature vectors based upon only LDA features (black curve), and (b) feature vectors that included 
Doppler sideband extent as an additional ad hoc feature (purple curve).  

From the first result it can be seen that with just two LDA features near maximum performance was 
achieved. For six or higher number of LDA features the performance flattened out. This implies that the 
useful information is contained in just the first few features. A classifier with just six LDA features would 
give optimum performance. This equated to a considerable reduction in the data dimensionality and 
therefore the classifier complexity. Such improvements greatly enhance the viability of the classifier for 
real-time implementation. 

With the addition of the Doppler extent feature, just the first two features alone provided the optimum 
performance. This pointed toward Doppler sideband extent being an important discriminating feature. It 
ties in with the observation from the feature analysis which showed a trend for tracked vehicles to have 
broad extent and wheeled vehicles to have narrow extent. It suggested that the LDA features are capturing 
the same information as in the Doppler extent of the sidebands albeit using more features. Unlike ad hoc 
features which are data specific and would often require lengthy and expansive data analysis, the LDA 
feature extraction process on the other hand would generalise for data with arbitrary attributes. 

 Personnel 

 Tracked Vehicles  

 Wheeled Vehicles 

Data with wide Doppler extent 
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Figure 6: Doppler classification as a function of number of features 

OVERALL Classification Decision (%) 

62.7% [58.3,67.1] Personnel Tracked Wheeled 

Personnel 96.4 
[99.8,93.0] 

2.7 

[0.1,5.3] 

0.9 

[0,2.9] 

Tracked 0.8 

[0.1,1.5] 

51.4 

[41.7,61.1]] 

47.8 

[38.2,57.4] 

 
 
 
Actual 
Class 

Wheeled 0.2 

[0,0.6] 

21.4 

[12.6,30.2] 

78.4 

[69.7,87.1] 
 

Table 2: Confusion Matrix of a Doppler classifier using 6 LDA features. Results averaged over 50 
bootstrap replicates 

Table 2 provides the confusion matrix for the classifier with six LDA features. The results were generated 
using 50 bootstrap replicates. Bootstrap is a statistical inference technique, first proposed by Efron [3], 
which allows a confidence interval to be assigned to the estimated quantity. Table 2 lists the mean of the 
bootstrap replicates along with the 90% confidence interval shown in square brackets. The results for the 
confidence interval were only approximate since far more bootstrap replicates (>1000) would be required 
for a more accurate measure. Nevertheless, the results were useful in determining general performance 
trends. Earlier the selection of the six LDA feature classifier was based on results that were essentially a 
single bootstrap replicate. This choice is lent support by the estimate of the 90% confidence interval for 
this classifier. Since the performance of the other classifiers with fewer LDA features was outside this 
range it can be concluded that the choice of the optimum is statistically significant. 

A per class comparison of the confusion matrix shows that just under half the tracked vehicles are 
misclassified as wheeled. This is not very surprising given the fact that a substantial proportion of the 
tracked vehicle data in the data set did not have the distinctive broad Doppler extent that differentiated it 
from wheeled vehicles. At this stage it can only be hypothesised that the confusion between the two 
vehicle classes is due to the absence of the track returns. The data were collected from vehicles that had 
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skirts covering the tracks. This would make the moving parts of the tracks more likely to be visible when 
viewed front-to-back, and vice versa, but less so at oblique angles. The data supported this inference, with 
far fewer of the measurements taken for vehicles travelling at oblique angles to the radar reporting the 
presence of the broad Doppler extent. This was in contrast to tracked vehicles travelling either directly 
toward or away from the radar, for which the majority of the data had the broad Doppler extent present. 

Unlike the two vehicle classes the personnel class separated very well. Some misclassification between 
personnel and tracked class may be expected since both possess broadening of the Doppler spectra. 
However, the manner in which the vehicle data were collected (constant velocity with aspect changing 
between measurements) meant that the personnel class was only being classified against vehicles that were 
travelling at very oblique angles. From the data it was observed that track returns were often absent when 
the vehicles were imaged at oblique angles. This may therefore explain the very good separation between 
the personnel and vehicle classes. More representative data that contains data from slowly moving 
vehicles with visible tracks would enable a better measure of the true performance. 

4.0 CONCLUSION 

For the three-class problem the classifier had no difficulty in recognising the personnel class but produced 
some degree of confusion between the wheeled and tracked classes. The classifier algorithm was 
optimised by choosing the best set of features that maximised the performance and the bootstrap method 
was used to measure the confidence interval. It was shown that only the first few LDA features were 
relevant for Doppler classification. At the very least these were shown to contain information regarding 
the frequency extent of target’s Doppler sidebands. 

The classifier was shown to be invariant to target aspect angle and speed and was able to model multiple 
target types. Models for additional classes that have distinct Doppler characteristics, like helicopters, can 
be easily incorporated into the algorithm. The LDA feature extraction represents a considerable reduction 
in data dimensionality and therefore is able to provide for very efficient implementation of the 
classification algorithm. The LDA based classifier, therefore, offers a very powerful tool for the automatic 
classification of moving targets from their Doppler signatures. 
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